metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Alexandr E. Oblezov,* Daniel R. Talham and Khalil A. Abboud

Department of Chemistry, University of Florida, PO Box 117200, Gainesville, Florida 32611-7200, USA

Correspondence e-mail: aoblezov@chem.ufl.edu

Key indicators

Single-crystal X-ray study T = 173 K Mean σ (C–C) = 0.002 Å R factor = 0.034 wR factor = 0.090 Data-to-parameter ratio = 21.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Aquachloro(1,4,8,11-tetraazaundecane)nickel(II) chloride

The title compound, $[NiCl(C_7H_{20}N_4)(H_2O)]Cl$, has the Ni atom in a distorted octahedral coordination with the four amino N atoms occupying a square plane while the chloro and aqua ligands occupy the axial positions. The Ni–N bond distances range from 2.079 (1) to 2.088 (2) Å.

Comment

Complexes of transition metals with long alkyl chains are widely used to build Langmuir–Blodgett monolayers with specific magnetic properties (Culp *et al.*, 2002, 2003). An attempt to synthesize a nickel(II) pentaazamacrocyclic complex with an attached 1-dodecyl chain, as described in Choi & Suh (2003), was not successful. The result of this reaction was the title complex, (I). Lavender-colored prismatic crystals were collected and characterized by single-crystal X-ray diffraction.

The tetradentate 1,4,8,11-tetraazaundecane ligand is coordinated to the Ni center in a wrap-around fashion, occupying the four square-planar positions. The Ni–N bond distances [average 2.080 (2) Å] are significantly longer than their counterparts in the (1,4,8,11-tetraazaundecane)nickel(II) cation [average 1.923 (5) Å] (Bernard *et al.*, 2001). In the latter, the Ni center is in a square-planar coordination with vacant axial positions.

The H atoms of the coordinated water and the uncoordinated counter-ion Cl2 are involved in hydrogen bonding with their inversion-symmetry equivalents, creating a diamondshaped motif. As a result, hydrogen-bonding chains are formed along the *b* axis. These chains are linked together by hydrogen bonds between the amino groups on the one hand and both (coordinated and uncoordinated) Cl⁻ ions, thus creating two-dimensional layers in the *ab* plane.

Experimental

To a refluxing solution of NiCl₂· $6H_2O$ (1.2 g, 5 mmol) in MeOH (50 ml) was added 1,4,8,11-tetraazaundecane (0.8 g, 5 mmol). After 3 h of reflux, the solvent was evaporated and a light-purple product of the reaction was dissolved in EtOH (20 ml). Slow evaporation of the solvent over 5 d, at room temperature, yielded light-purple prismatic crystals.

 \odot 2003 International Union of Crystallography Printed in Great Britain – all rights reserved

Received 1 October 2003 Accepted 23 October 2003 Online 31 October 2003

Figure 1

View of the asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2

View of the two-dimensional layer in the crystal structure of the title compound.

Crystal data

$[NiCl(C_7H_{20}N_4)(H_2O)]Cl$	$D_x = 1.537 \text{ Mg m}^{-3}$
$M_r = 307.90$	Mo $K\alpha$ radiation
Monoclinic, $P2_1/n$	Cell parameters from 1
a = 8.3029 (6) Å	reflections
b = 10.2497 (7) Å	$\theta = 2.0-28.0^{\circ}$
c = 15.6829 (11) Å	$\mu = 1.84 \text{ mm}^{-1}$
$\beta = 94.470 \ (2)^{\circ}$	T = 173 (2) K
$V = 1330.59 (16) \text{ Å}^3$	Plate, purple
Z = 4	$0.26 \times 0.24 \times 0.23$ mm

Data collection

Bruker SMART 1K CCD areadetector diffractometer ω scans Absorption correction: by integration based on measured indexed crystal faces (SHELXTL; Bruker, 2000) $T_{\rm min}=0.536,\ T_{\rm max}=0.753$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.034$ $wR(F^2) = 0.090$ S=1.022944 reflections 136 parameters H-atom parameters constrained 12

7715 measured reflections 2944 independent reflections 2798 reflections with $I > 2\sigma(I)$ $R_{\rm int}=0.089$ $\theta_{\rm max} = 27.5^{\circ}$ $h = -5 \rightarrow 10$ $k = -12 \rightarrow 13$ $l = -20 \rightarrow 19$

 $w = 1/[\sigma^2(F_o^2) + (0.0519P)^2]$ + 0.4679P] where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.53 \ {\rm e} \ {\rm \AA}^{-3}$ $\Delta \rho_{\rm min} = -0.94 \text{ e } \text{\AA}^{-3}$

Selected geometric parameters (Å, °).

Ni1-N1	2.0788 (14)	Ni1-N4	2.0878 (16)
Ni1-N2	2.0805 (16)	Ni1-O1	2.1821 (13)
Ni1-N3	2.0825 (13)	Ni1-Cl1	2.4777 (5)
N1-Ni1-N2	84 41 (6)	N3-Ni1-O1	93 46 (5)
N1-Ni1-N3	175.50 (6)	N4-Ni1-O1	90.26 (5)
N2-Ni1-N3	92.08 (6)	N1-Ni1-Cl1	88.33 (4)
N1-Ni1-N4	99.99 (6)	N2-Ni1-Cl1	90.84 (4)
N2-Ni1-N4	175.18 (5)	N3-Ni1-Cl1	88.91 (4)
N3-Ni1-N4	83.62 (6)	N4-Ni1-Cl1	91.25 (4)
N1-Ni1-O1	89.23 (5)	O1-Ni1-Cl1	177.32 (3)
N2-Ni1-O1	87.82 (5)		. ,

Table 2		
Hydrogen-bonding geometry	(Å,	°).

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
O1-H1···Cl2	0.96	2.28	3.2359 (13)	174
$N1 - H1D \cdot \cdot \cdot Cl2$	0.92	2.44	3.3123 (16)	159
$O1 - H2 \cdot \cdot \cdot Cl2^i$	0.97	2.15	3.1066 (14)	167
$N4-H4C\cdots Cl2^{i}$	0.92	2.64	3.4766 (14)	151
$N1-H1C\cdots Cl1^{ii}$	0.92	2.68	3.4699 (17)	144
$N4-H4D\cdots Cl1^{ii}$	0.92	2.57	3.4356 (15)	157
$N4-H4C\cdots Cl2^{i}$	0.92	2.64	3.4766 (14)	151

Symmetry codes: (i) 2 - x, 1 - y, 2 - z; (ii) 2 - x, -y, 2 - z.

The C-H and N-H H atoms were placed in idealized positions and refined riding on their parent atoms. A C-H distance of 0.99 Å was used for Csp³ atoms. N-H distances of 0.93 and 0.92 Å were used for N-H and N-H₂ amino groups, respectively. The H-atom displacement parameters were set at $1.2U_{eq}$ of the parent C or N atoms. The water molecule H atoms were obtained from a difference Fourier map, but did not refine satisfactorily. Thus, they were constrained in a riding model on the O atom.

Data collection: SMART (Bruker, 2000); cell refinement: SMART and SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Bruker, 2000); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

We acknowledge the National Science Foundation and the University of Florida for funding to purchase the X-ray equipment.

References

- Bernard, B. R., Haines, R. I. & Rowley, J. E. (2001). Transition Met. Chem. 26, 164-169.
- Bruker (2000). SMART (Version 5.624), SAINT (Version 6.22) and SHELXTL (Version 6.1). Bruker AXS Inc., Madison, Wisconsin, USA. Choi, H. J. & Suh, M. P. (2003). Inorg. Chem. 42, 1151-1157.
- Culp, J. T., Park, J.-H., Meisel, M. W. & Talham, D. R. (2003). Inorg. Chem. 42, 2842-2848.
- Culp, J. T., Park, J.-H., Stratakis, D., Meisel, M. W. & Talham, D. R. (2002). J. Am. Chem. Soc. 124, 10083-10090.